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BACKGROUND & AIMS: We recently reported use of tissue-
based transcriptomic biomarkers (microRNA [miRNA] or
messenger RNA [mRNA]) for identification of lymph node
metastasis (LNM) in patients with invasive submucosal colo-
rectal cancers (T1 CRC). In this study, we translated our tissue-
based biomarkers into a blood-based liquid biopsy assay for
noninvasive detection of LNM in patients with high-risk T1
CRC. METHODS: We analyzed 330 specimens from patients
with high-risk T1 CRC, which included 188 serum samples from
2 clinical cohorts—a training cohort (n ¼ 46) and a validation
cohort (n ¼ 142)—and matched formalin-fixed paraffin-
embedded samples (n ¼ 142). We performed quantitative
reverse-transcription polymerase chain reaction, followed by
logistic regression analysis, to develop an integrated tran-
scriptomic panel and establish a risk-stratification model
combined with clinical risk factors. RESULTS: We used
comprehensive expression profiling of a training cohort of
LNM-positive and LMN-negative serum specimens to identify
an optimized transcriptomic panel of 4 miRNAs (miR-181b,
miR-193b, miR-195, and miR-411) and 5 mRNAs (AMT, fork-
head box A1 [FOXA1], polymeric immunoglobulin receptor
[PIGR], matrix metalloproteinase 1 [MMP1], and matrix met-
alloproteinase 9 [MMP9]), which robustly identified patients
with LNM (area under the curve [AUC], 0.86; 95% confidence
interval [CI], 0.72–0.94). We validated panel performance in an
independent validation cohort (AUC, 0.82; 95% CI, 0.74–0.88).
Our risk-stratification model was more accurate than the panel
and an independent predictor for identification of LNM (AUC,
0.90; univariate: odds ratio [OR], 37.17; 95% CI, 4.48–308.35;
P < .001; multivariate: OR, 17.28; 95% CI, 1.82–164.07;
P ¼ .013). The model limited potential overtreatment to only
18% of all patients, which is dramatically superior to pathologic
features that are currently used (92%). CONCLUSIONS: A novel
risk-stratification model for noninvasive identification of T1
CRC has the potential to avoid unnecessary operations for pa-
tients classified as high-risk by conventional risk-classification
criteria.
ratio; PCR, polymerase chain reaction; T1 CRC, invasive submucosal
colorectal cancer.
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n recent years, the diagnosis of invasive submucosal
Icolorectal cancers (T1 CRCs) has increased by up to
15% to 30% due to the implementation of mass CRC
screening and frequent patient examinations.1,2 However,
recent advances in endoscopic devices have enabled cura-
tive treatment via endoscopic submucosal dissection (ESD)
or endoscopic mucosal resection (EMR) for patients with T1
CRC who would have otherwise been treated by radical
operations Q.3 This has prompted the National Comprehensive
Cancer Network to recommend ESD as a preferred treat-
ment modality for patients with suspected T1 CRC.

Successful treatment of patients with T1 CRCs starts
with an accurate diagnosis during endoscopy. However, 2
prospective studies recently highlighted that 30% to 40% of
these patients are misdiagnosed and that the presurgical
discrimination of T1 CRC remains clinically challenging.4,5

Although some patients can be successfully treated with
ESD or EMR, approximately 70% to 80% of patients with T1
CRC require radical operations to achieve a complete
cure owing to the potential risk for lymph node metastasis
(LNM) after pathologic analysis, which is estimated to occur
in as many as 5% to 15% of patients with high-risk T1
CRC.6–8

With the implementation of endoscopic treatment for
suspected T1 CRCs, identifying the risk of LNM has become
necessary to select patients who truly have high-risk disease
and require radical surgery while sparing others from
overtreatment. The currently used pathologic criteria to
identify LNM in patients with T1 CRC include depth of
� 26 April 2021 � 9:08 am � ce
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Patients with high-risk invasive submucosal colorectal
cancers are often recommended radical surgery due to
the risk of lymph node metastases (LNM), but the
current pathologic criteria for risk-stratification of LNM
are inadequate and often lead to overtreatment.

NEW FINDINGS

Serum and matched tumor specimens from independent
patient cohorts were used to develop a noninvasive,
liquid biopsy transcriptomic assay that can robustly
identify patients at risk for LNM before surgery. This
biomarker panel was combined with key clinical features
to establish a risk-stratification model that exhibited
superior accuracy for identification of LNM.

LIMITATIONS

This was a retrospective study, and independent
prospective studies are needed to further confirm the
diagnostic potential of this diagnostic assay before its
translation in the clinic.

IMPACT

This risk-stratification model has a potential to serve as a
noninvasive, liquid biopsy assay to identify patients with
high-risk invasive submucosal colorectal cancers with
LNM before surgery and reduce the overall burden of
unnecessary operations and expense associated with
these procedures.
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submucosal invasion (>1000 mm), presence of lymphatic or
vascular invasion, high-grade tumor budding, and poorly
differentiated histology.9–13 If these factors are absent,
endoscopic treatment is considered sufficient to cure pa-
tients with T1 CRC who have low-risk for LNM.14,15

Unfortunately however, if even one of these pathologic
risk features is present in clinical settings, the patient is
deemed as “high risk for LNM” and is recommended to
undergo additional surgery.3,11,16,17 Such a dichotomized
clinical management approach for patients with T1 CRCs
has serious drawbacks, because it often leads to over-
treatment, even though the positive predictive value for the
presence of LNM is quite low.18 By using the current clini-
copathologic criteria, approximately 70% to 80% of patients
with T1 CRC are classified as high risk, whereas postsurgical
pathologic results demonstrate that only 5% to 15% of
these patients actually have LNM.10,14,16,19–25

This highlights an important clinical challenge: we need
more prudent risk assessment for limiting unnecessary
radical surgery in 85% to 95% of patients with T1 CRC. In
addition, these data suggest the inadequacy of currently
used pathologic risk factors and emphasize the need to
develop robust molecular biomarkers that can identify the
presence of LNM preoperatively, which would better
inform clinical decision making in patients with T1 CRC,
minimize the number of operations performed, and reduce
the overall burden of costs associated with such invasive
procedures.
FLA 5.6.0 DTD � YGAST64254_proof
Accumulating evidence indicates that the expression
pattern of microRNAs (miRNAs) reflects the physiological
and pathologic status of patients with cancer. In fact, several
studies have identified the differential expression of specific
miRNAs to be directly involved in CRC pathogenesis and
have emphasized their potential as circulating biomarkers
for CRC.26–30 Although considerable advances have been
made in exploiting miRNAs as noninvasive diagnostic bio-
markers,31–33 using circulating miRNAs to clinically identify
high-risk T1 CRCs has thus far not been attempted.

We previously described a panel of tissue-based miRNAs
and gene expression biomarkers that allowed robust
detection of LNM in patients with T1 CRC.34,35 However, an
ideal clinical application of these biomarkers would be to
use them to diagnose patients with high-risk T1 CRC before
surgery, before such tissue specimens are readily available.
Therefore, translating these biomarkers into a “liquid bi-
opsy” assay is attractive, because this would allow a
noninvasive, facile, and inexpensive diagnostic assay for
LNM in patients with high-risk T1 CRC.

To address this gap in knowledge, we evaluated the
feasibility of translating our previously reported tran-
scriptomic biomarkers (miRNAs and messenger [m]RNAs)
into a blood-based, noninvasive assay by systematically
analyzing blood specimens from multiple cohorts of pa-
tients with T1 CRC. As a result, we successfully established
a novel, blood-based, transcriptomic signature that robustly
identified the presence of LNM in patients with T1 CRC,
with an area under the curve (AUC) value of 0.90. This
assay allowed reclassification of 75% of high-risk T1 CRCs
into the low-risk group, which would obviate the need for
unnecessary operations in this significant majority of pa-
tients who would have otherwise been subjected to radical
operations based on conventional pathologic risk-
assessment criteria.
Materials and Methods
Patient Cohorts

We analyzed 330 patient samples, which included 188
serum specimens from patients with high-risk T1 CRCs
comprising 2 independent clinical cohorts: a training cohort of
46 patients with 5 LNM-positive (LNP) and 41 LNM-negative
(LNN) patients from the National Cancer Center Hospital,
Japan, and a validation cohort of 142 patients with 12 LNP and
130 LNN patients from the National Cancer Center Hospital
East, Japan (Figure 1A). Matched formalin-fixed paraffin-
embedded (FFPE) specimens (n ¼ 142), which were obtained
after endoscopic or surgical tumor resection, were also ob-
tained from patients within the validation cohort.

All patients were diagnosed as high-risk pathologically. The
pathologic criteria included depth of submucosal invasion
(>1000 mm), presence of lymphatic or vascular invasion, high-
grade tumor budding, and poorly differentiated histology.
Radical operations were performed in all patients in the
training cohort between January 2017 and December 2017 and
in the validation cohort between January 2011 and December
2017. Exclusion criteria were synchronous advanced CRCs,
� 26 April 2021 � 9:08 am � ce
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Figure 1. Training phase of a transcriptomic panel for the identification of LNM in patients with T1 CRC. (A) Overview of the
study. (B) A receiver operating characteristic curve for a 4-miRNA and 5-mRNA panel in serum from training cohort patients
(LNP ¼ 5, LNN ¼ 41; AUC: 0.78 for 4-miRNA panel; 0.77 for 5-mRNA panel; 0.86 for combination panel). (C) Risk score
distribution plot in training cohort patients. Modified risk scores were obtained from individual risk scores by using Youden’s
index values from the risk model. (D) Forest plots with ORs for each panel risk score status in univariate logistic regression
analysis in training cohort patients (OR: 8.62 for 4-miRNA panel; 8.44 for 5-mRNA panel; 14.22 for combination panel).
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presence of distant metastases, hereditary or inflammation-
associated CRC, nonadenocarcinoma, or nonavailability of
serum specimens.

All patients underwent standard endoscopic and surgical
procedures (resection of affected segment of colon or rectum
and regional lymphadenectomy), and all specimens were
evaluated by pathologists at each participating institution, ac-
cording to the Seventh Edition of the American Joint Committee
on Cancer TNM grading system. The study was conducted in
accordance with the Declaration of Helsinki. Written informed
FLA 5.6.0 DTD � YGAST64254_proof
consent was obtained from all patients, and the study was
approved by the institutional review boards of all participating
institutions.
RNA Extraction From Serum and Formalin-Fixed
Paraffin-Embedded Specimens

Total RNA extraction from all serum specimens was per-
formed using the Qiagen miRNeasy Kit (Qiagen, Hilden, Ger-
many). Briefly, 200 mL of serum was thawed on ice and
� 26 April 2021 � 9:08 am � ce
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Table 1.Clinicopathologic Characteristics of Clinical Cohorts

Characteristics
Training cohort

(n ¼ 46)
Validation cohort

(n ¼ 142) P

Age, y
Median (range) 70 (38–90) 67 (24–85) .16

Sex
Male 24 (52) 86 (61)
Female 22 (48) 56 (39) .32

LNM
Positive 5 (11) 12 (8)
Negative 41 (89) 130 (92) .62

MSI status
MSI-H 10 (7)
MSI-L 5 (4)
MSS 127 (89) .

Tumor location
Right side 17 (37) 41 (29)
Left side 29 (63) 101 (71) .3

Tumor size, mm
�20 23 (50) 65 (46)
<20 23 (50) 77 (54) .18

Submucosal
invasion, mm
�1000 43 (93) 140 (99)
<1000 3 (7) 2 (1) .16

Budding grade
�2 9 (20) 26 (18)
1 27 (58) 104 (74)
Unavailable 10 (22) 12 (8) .52

Lymph invasion
Positive 13 (28) 53 (37)
Negative 33 (72) 89 (63) .26

Vascular invasion
Positive 13 (28) 49 (35)
Negative 33 (72) 93 (65) .43

Differentiation
Well 22 (48) 97 (68)
Moderate 21 (46) 43 (31)
Poor 2 (4) 0 (0)

NOTE. Data are shown as n (%) unless indicated otherwise.
MSI, microsatellite instability; MSI-H, high-frequency micro-
satellite instability; MSI-L, low-frequency microsatellite
instability; MSS, microsatellite stable.
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centrifuged at 3000g for 5 minutes to remove cell debris. Next,
200 mL of the supernatant was lysed in 5 times the volume of
QIAzol solution (Qiagen). To normalize any inadvertent sample-
to-sample variations during the RNA isolation procedure, 3.5
mL of synthetic Caenorhabditis elegans miRNA (cel-miR-39) was
spiked into each denatured sample. Total RNA was subse-
quently enriched and purified following the manufacturer’s
protocol. For FFPE specimens, 10-mm-thick sections were
manually microdissected to enrich for cancer cells (>75% of
tumor cells), and the RNA was extracted using the AllPrep
DNA/RNA FFPE Kit (Qiagen). Extracted RNA from serum and
FFPE specimens was processed for the generation of comple-
mentary DNA (cDNA) before polymerase chain reaction (PCR)
assays.

Real-Time Quantitative Reverse-Transcription
Polymerase Chain Reaction Assays

For miRNA, synthesis of cDNA from total RNA was per-
formed using the TaqMan microRNA Reverse Transcription Kit
(Thermo Fisher Scientific, Waltham, MA). For mRNA, a high-
capacity cDNA Reverse Transcription Kit (Thermo Fisher Sci-
entific) was used to convert RNA into cDNA. Real-time reverse
transcription quantitative PCR analysis was performed using
the SensiFAST probe Lo-ROX Kit (Bioline, London, United
Kingdom) on the QuantStudio 7 Flex Real Time PCR System
(Applied Biosystems, Foster City, CA), and expression levels
were evaluated using the corresponding software system. The
relative abundance of target transcripts was evaluated and
normalized to the expression of miR-16 for miRNA and b-actin
for mRNA as internal controls, using the 2�DDCt method. DCt
represents the difference of cycle threshold (Ct) values be-
tween the miRNA of interest and the internal normalizing gene.
Normalized expression values were log10 transformed36 before
downstream statistical analysis. All primers for miRNAs
analyzed in this study were purchased from Thermo Fisher
Scientific. The catalog number for all miRNA primers was
4427975, and the assay IDs of individual miRNAs were as fol-
lows: Hsa-miR-16: 391, Hsa-miR-32-5p: 2109, Hsa-miR-181b:
1098, Hsa-miR-193b-3p: 2367, Hsa-miR-195-5p: 494, and
Hsa-miR-411-5p: 1610. The primer sequences for the target
genes used in the present study are listed in Supplementary
Table 1.

Statistical Analysis
Clinicopathologic characteristics of the patient cohorts are

shown as patient number and ratio except for age (median and
range) (Table 1). The cutoff thresholds for continuous variables
were divided by the median value in the total participants.
Several clinicopathologic characteristics were compared be-
tween LNP and LNN patients by using the c2 or Mann-Whitney
U test for categorical data. Binary logistic regression was used
to train a classifier based on the expression of 4 miRNAs and 5
mRNAs. Of note, once the model was trained in the training
cohort, the same statistical model variables (weights and cutoff
thresholds) were applied in the validation cohort. The LNM risk
score for all patients was calculated based on the individual
biomarker coefficients derived from the training cohort as fol-
lows: Logit (P) ¼ (�0.318 � MIR181b) þ (�0.762 �
MIR193b) þ (�1.019 � MIR195) þ (�0.627 � MIR411) þ
FLA 5.6.0 DTD � YGAST64254_proof
(�0.135 � AMT) þ (�0.010 � forkhead box A1 [FOXA1]) þ
(0.241 � matrix metalloproteinase 1 [MMP1]) þ (�0.776 �
matrix metalloproteinase 9 [MMP9]) þ (0.231 � polymeric
immunoglobulin receptor [PIGR]) � 8.363. The cutoff threshold
for the LNM risk score was chosen as 0.08, which was deter-
mined by Youden’s index.

For all cohorts, receiver operator characteristic curves and
AUC values were used to evaluate the performance of the panel
for LNM detection in patients with T1 CRC. A P value of <.05
was considered statistically significant. Statistical analyses
were performed using JMP Genomics 9.0 statistical software
� 26 April 2021 � 9:08 am � ce
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(SAS Institute Japan, Tokyo, Japan), Medcalc 16.2.0 statistical
software (Medcalc Software bvba, Ostend, Belgium), GraphPad
Prism 7.0 (GraphPad Software, San Diego, CA), and R 3.5.0 (R
Development Core Team, https://cran.r-project.org/).

Results
Patients Within the Training and Validation
Cohorts Exhibited Similar Clinicopathologic
Features, Including the Rate of Lymph Node
Metastasis

To develop a blood-based, noninvasive assay, we first
confirmed that both cohorts of patients with T1 CRC showed
similar clinicopathologic characteristics. The training cohort
consisted of 46 patients with T1 CRC, which included 5
patients (11%) with LNM; the patients in this cohort were a
median age of 70 years. The validation consisted of 142
patients with T1 CRC, which included 12 patients (8%) with
LNM; the patients in this cohort were a median age of 67
years. The detailed clinicopathologic characteristics of the
patients in these cohorts are provided in Table 1. We
observed no statistically significant difference in the prev-
alence of LNM rates or any other clinicopathologic charac-
teristic between the 2 cohorts, which eliminates any
inadvertent bias between the patient cohorts examined in
our study.

A Noninvasive Transcriptomic Risk-Assessment
Model Identifies Lymph Node Metastasis in
Patients With T1 Colorectal Cancer

By undertaking a systematic and comprehensive
biomarker discovery and validation effort, we previously
reported tissue-based miRNA and mRNA signatures for the
identification of LNM in patients with T1 CRC.34,35 In these
studies, we described a panel of 5 miRNAs (miR-32, miR-
181b, miR-193b-3p, miR-195-5p, and miR-411-5p) and 8
genes (AMT, FOXA1, MMP1, MMP9, LYZ, C2CD4A, RCC1, and
PIGR) that could identify LNM in patients with T1 CRC.
However, an ideal clinical application of these biomarker
signatures would be in a noninvasive, liquid biopsy, diag-
nostic platform. Such a platform would obviate the need for
analysis of tissue specimens, which are generally not avail-
able from most patients in preoperative settings. Therefore,
in this study, we focused on translating the tissue-based
biomarkers into a blood-based assay that could yield a
clinically attractive assay for noninvasive diagnosis of LNM
in patients with T1 CRC.

Accordingly, we evaluated the expression of our tran-
scriptomic biomarkers in 2 independent cohorts of patients
with T1 CRCs. First, we evaluated the feasibility of detecting
the miRNA and mRNA markers using real-time quantitative
reverse transcription PCR in serum specimens from the
training cohort of patients (5 LNP and 41 LNN). One miRNA
(miR-32-5p) and 3 mRNAs (LYZ, C2CD4A, and RCC1) were
not detectable in serum specimens, which led us to establish
a panel of 4 miRNAs (miR-181b, miR-193b-3p, miR-195-5p,
and miR-411-5p) and 5 mRNAs (AMT, FOXA1, MMP1,
MMP9, and PIGR).
FLA 5.6.0 DTD � YGAST64254_proof
Next, we systematically interrogated the diagnostic ac-
curacy of our transcriptomic panel for its ability to detect
LNM in patients with T1 CRC. Using logistic regression
analysis, we trained a risk-assessment model in the
training cohort of patients that allowed robust identifica-
tion of LNM in patients with T1 CRC using the 4 miRNAs
(AUC, 0.78; 95% CI, 0.64–0.89) or the 5 mRNAs (AUC, 0.77;
95% CI, 0.62–0.88) (Figure 1B and C and Supplementary
Table 2). Identification of LNM was notably superior
when we used all 4 miRNAs and 5 mRNAs to establish a
combined transcriptomic panel (AUC, 0.86; 95% CI, 0.72–
0.94).

We performed univariate analysis to confirm that each of
the biomarker panels was quite robust individually (miRNA
panel: odds ratio [OR], 8.62; P ¼ .06; mRNA panel: OR, 8.44;
P ¼ .05) (Figure 1D, Supplementary Table 3). However, the
combined panel was significantly superior in diagnosing the
presence of LNM in patients with T1 CRC (OR, 14.22; P ¼
.02). We developed this risk-assessment scoring model
based on the coefficients derived from individual markers
by using the logistic regression analysis as the following
model parameters: Logit (P) ¼ (�0.318 � MIR181b) þ
(�0.762 � MIR193b) þ (�1.019 � MIR195) þ (�0.627 �
MIR411) þ (�0.135 � AMT) þ (�0.010 � FOXA1) þ
(0.241 � MMP1) þ (�0.776 � MMP9) þ (0.231 � PIGR) �
8.363. Taken together, these data show we successfully
established a novel transcriptomic panel for noninvasive
identification of LNM in patients with T1 CRC.
Transcriptomic Biomarkers and a Risk
Nomogram Identify Lymph Node Metastases in
Patients With T1 Colorectal Cancer in an
Independent Validation Cohort

After the encouraging results of our blood-based tran-
scriptomic panel for the noninvasive detection of LNM, we
next confirmed its robustness and accuracy by applying the
same statistical coefficients in serum specimens from a
large, independent, validation cohort of 12 LNP and 130
LNN patients. To further assess our ability to assay tran-
scriptomic biomarkers shed by the primary cancer into the
systemic circulation, we also used matched endoscopically
or surgically resected FFPE tissue specimens from patients
within this cohort. We first evaluated the diagnostic accu-
racy of our transcriptomic panel in these FFPE surgical
specimens and were enthused to observe that its diagnostic
performance was comparable to that observed in serum
specimens in the training cohort (AUC, 0.83; 95% CI, 0.75–
0.89) (Figure 2A). When we evaluated the performance of
the signature in matched blood serum specimens, the
diagnostic accuracy was in line with the findings from tissue
specimens (AUC, 0.82; 95% CI, 0.74–0.88) (Figure 2B
and C). This highlights the clinical significance of our tran-
scriptomic panel in identifying the presence of LNM in pa-
tients with T1 CRC.

For an easier translation of the biomarker panel into
the clinic, we evaluated its performance along with other
pathologic risk features (ie, lymphatic or vascular invasion,
high-grade tumor budding) and established a nomogram
� 26 April 2021 � 9:08 am � ce
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Figure 2. Validation phase of the transcriptomic panel for the identification of LNM in patients with T1 CRC. A receiver
operating characteristic curve for the transcriptomic panel in (A) tissue specimens from validation cohort patients (LNP ¼ 12,
LNN ¼ 130; AUC, 0.83) and (B) in matched serum samples in validation cohort patients (LNP ¼ 12, LNN ¼ 130; AUC, 0.82). (C)
Risk score distribution plot in serum specimens from validation cohort patients. (D) A nomogram illustrates the probability of
LNM risk. For clinical purposes, the scores of each covariate are added, and the total score is depicted on the total score point
axis.
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for predicting the diagnostic probability for the presence of
LNM from validation cohort. Through ranking the effect
estimators, point scores were assigned to each risk factor.
FLA 5.6.0 DTD � YGAST64254_proof
The total points accumulated from all the risk factors
corresponded to the predicted probability of LNM for in-
dividual patients. We incorporated all pathologic and
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molecular risk features and determined that although other
pathologic risk-assessment features added some weight to
the model, our panel had the highest weight in this model
and was an independent and the most significant predictor
for the presence of LNM in patients with T1 CRC
(Figure 2D).
787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

CL
IN
IC
AL

AT
A Risk-Stratification Model That Combines
Transcriptomic Biomarkers and Current Risk-
Assessment Features Significantly Improves
Diagnosis of Lymph Node Metastasis in Patients
with T1 Colorectal Cancer

Considering the current landscape of widely used clin-
ical risk factors for identifying patients with T1 CRC, we
asked whether a risk-stratification model that includes
some of the currently used pathologic risk features (ie,
lymphatic and vascular invasion, tumor budding grade, and
depth of tumor invasion) along with our transcriptomic
biomarkers might further improve diagnostic accuracy in
detecting LNM in patients with T1 CRC. Because 12 patients
lacked clinical information, 130 patients were included in
risk-stratification model. When we performed such an
analysis in the patients within the serum specimens of
validation cohort, this led to a significant improvement in
its diagnostic sensitivity and specificity for the identification
of LNM (AUC, 0.90; 95% CI, 0.83–0.95) (Figure 3A and
Table 2).

We next determined specific diagnostic correlates for
our combined biomarker panel in blood samples from the
validation cohort: its sensitivity, specificity, positive pre-
dictive value, and negative predictive value were 83.3%,
76.2%, 24.4%, and 98.0%, respectively (Table 2). When we
performed a similar analysis of the newly established risk-
stratification model that also included pathologic risk
features, its performance was significantly superior: its
sensitivity, specificity, positive predictive value, and nega-
tive predictive value were 90.0%, 81.4%, 29.0%, and 99.0%,
respectively. This highlights the superiority of the risk-
stratification model for identifying LNM in patients with
T1 CRC.

We next categorized all patients into high- and low-risk
groups using cutoff thresholds derived from Youden’s index
for the 9 miRNA and mRNA biomarkers. Accordingly, we
performed univariate logistic regression analysis which
revealed that our transcriptomic panel emerged as an in-
dependent predictor for LNM in patients with T1 CRC in
both clinical cohorts compared with any single clinical risk
factor (training cohort: OR, 14.22; 95% CI, 1.41–143.68; P ¼
.025; validation cohort: OR, 15.97; 95% CI, 3.32–76.82; P <
.001 (Table 3).

Further, univariate and multivariate logistic regression
analysis revealed that our novel risk-stratification model
was superior compared with the panel and an independent
predictor of LNM (univariate: OR, 37.17; 95% CI, 4.48–
308.35; P < .001; multivariate: OR, 17.28; 95% CI, 1.82–
164.07; P ¼ .013) in the validation cohort of patients
FLA 5.6.0 DTD � YGAST64254_proof
(Figure 3B and C and Table 3). Collectively, these data
highlight the potential clinical significance of our risk-
stratification model for diagnosis and risk assessment in
the identification of LNM.

Our noninvasive risk-assessment model is significantly
superior to currently used pathologic risk factors for iden-
tifying patients with high-risk T1 CRC and reducing the
burden of unnecessary surgical treatments

The ultimate goal of our study was to determine the
clinical usefulness of our transcriptomic panel in non-
invasively identifying patients who truly have LNM and
sparing the rest from unnecessary operations. In this study,
we only enrolled patients who were deemed high-risk
based on the currently used pathologic risk factors. How-
ever, only 8% of “high-risk” patients (12 of 142) were
actually high risk, indicating that 92% of patients (130 of
142) were erroneously categorized as high risk and un-
derwent unnecessary radical operations (Figure 3D, left
panel).

In contrast, when we analyzed the same patients using
our transcriptomic classifier and divided into high and low
risk by Youden’s index, it stratified 29% of patients into the
high-risk category (41 of 142). Among these, 10 patients
(7%) had LNM, indicating that only 22% of the entire cohort
(31 of 142) received overtreatment, which is notably su-
perior to potential overtreatment compared with the
currently used pathologic features (92% vs 22%)
(Figure 3D, middle panel). Our newly established risk model
was even more accurate than the panel, as it stratified only
25% of patients into the high-risk group (32 of the 130), and
the remaining 75% (98 of the 130) of patients were deemed
as low risk. Of the 32 patients who were classified as high
risk, 9 patients (7%) had LNM, indicating that only 18% (23
of 130) of all patients with T1 CRC were potentially over-
treated, which is dramatically superior compared with
currently used pathologic features (92% vs 18%)
(Figure 3D, right panel). This highlights the potential for
using our liquid biopsy-based risk-assessment model in
patients with high-risk T1 CRC.

Discussion
The presence of LNM is an important risk factor for

additional surgery after curative endoscopic treatment in
patients with T1 CRC. Our present study overcomes the
inadequacy of clinicopathologic risk features that are
currently used in the clinic to identify LNM in “high-risk”
subsets of patients with T1 CRC. Our data demonstrate that
a blood-based, transcriptomic assay can be used to accu-
rately estimate risk in preoperative settings, has a
tremendous clinical potential for more robust risk-
stratification for the identification of LNM, and can lead
to a dramatic reduction in the number of unnecessary
operations that are currently being performed in these
patients. Identifying true high-risk patients and saving
others from such unnecessary treatment will reduce pa-
tient complications, physician burdens, and associated
health care costs.37–39
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In this study, our newly established noninvasive risk
model exhibited a significantly superior diagnostic accuracy
for LNM (AUC, 0.90) vs the currently used clinical risk
FLA 5.6.0 DTD � YGAST64254_proof
models (AUC, 0.73 [training] and 0.76 [validation]
(Supplementary Figure 1). Although all patients enrolled in
our study were deemed to be high-risk for LNM and
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Table 2.Model Performance in Estimating the Risk of Lymph Node Metastasis

Variable

Value (95% CI)

Training cohort
(Blood)

Validation cohort
(FFPE)

Validation cohort
(Blood)

Risk-stratification
model (Blood)

Cutoff value 0.08 0.05 0.08 0.08

Sensitivity, % 80.0 (28.4–99.5) 91.7 (61.5–99.8) 83.3 (51.6–97.9) 90.0 (55.5–99.7)

Specificity, % 92.7 (80.1–98.5) 73.9 (65.4–81.2) 76.2 (67.9–83.2) 81.4 (73.1–87.9)

AUC, % 85.5 (71.8–94.0) 82.6 (75.4–88.5) 81.5 (74.1–87.5) 90.0 (83.4–94.6)

PPV, % 57.1 (29.2–81.2) 24.4 (18.8–31.2) 24.4 (17.8–32.4) 29.0 (21.0–38.6)

NPV, % 97.4 (86.8–99.5) 99.0 (93.6–99.8) 98.0 (93.3–99.4) 99.0 (93.7–99.8)

NPV, negative predictive value; PPV, positive predictive value.
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received radical surgery, postsurgical pathologic analyses
identified that only 9% (17 of 188 [46 in the training cohort
and 142 in the validation cohort]) of patients were LNP and
that 91% of patients underwent unnecessary operations.
Our newly established diagnostic signature revealed that
only 18% were overtreated, which is dramatically better for
identification of LNM.

Several reports have indicated the potential of ESD for
diagnosing LNM in patients with T1 CRC40,41; however,
others suggest its diagnostic accuracy for LNM is still
inadequate.42 Because current clinical guidelines consider
the presence of LNM an important risk factor for classifying
a patient with T1 CRC as high risk, this highlights the need
to develop robust biomarkers for LNM before treatment,
which would be clinically transformative in selecting pa-
tients who truly require such invasive and radical surgical
treatments. Our ability to successfully validate our signature
in pretreatment serum samples underscores its clinical
significance for improved treatment strategies in patients
with T1 CRC, especially the ones who truly have LNM. Our
previous studies similarly highlighted the clinical use of
pretreatment serum samples for diagnostic purposes in
patients with CRC; however, none of the previous studies
used these samples directly for diagnosing LNM status,
which could have a profound impact in the selection of
treatment strategies.31–33,43 Preoperative application of our
transcriptomic biomarkers as a robust, facile, and inexpen-
sive assay will lead to minimized risks from surgical pro-
cedures, including perforation or bleeding, and a reduction
in the overall health care burden from such expensive sur-
gical procedures.
=
Figure 3. Clinical validation of the risk-stratification model in p
combines the transcriptomic panel and pathologic risk factors, o
risk factors alone in serum specimens from validation cohort p
variables, transcriptomic panel, and risk-stratification model in (B
validation cohort patients. (D) Currently used pathologic factors
panel). The patients in validation cohort using our transcriptomic
Youden’s index. The pie chart shows LNM status of LNP (orang
led to the overtreatment of only 22% patients with T1 CRC (mid
the overtreatment of only 18% patients with T1 CRC (right pan

FLA 5.6.0 DTD � YGAST64254_proof
Our study has some potential limitations because our
retrospective study design might result in a potential se-
lection bias. First, owing to the limited sample size (espe-
cially the small number of positive cases) in the present
study, we evaluated our signature in a moderately sized
clinical cohort. Thus, a prospective clinical trial with larger
patient cohorts is required to further confirm the diagnostic
accuracy of our risk-stratification model.

Second, our study used training and validation cohorts of
patients from Japan, who showed similar clinicopathologic
characteristics; such characteristics could potentially vary if
we were to analyze patient populations from other coun-
tries. Therefore, it will be important to validate the selected
biomarkers and our risk-stratification model in patient co-
horts from other countries to further reinforce the gener-
alizability of our findings.

Finally, we established the risk-stratification model
which included miRNAs, mRNAs, and clinical factors.
However, previous reports showed that the patients with
the consensus molecular subtypes and DNA mutations
were related to the risk for LNM.44,45 Because fewer factors
have the potential for an easier clinical application, future
studies may need to explore other factors such as
consensus molecular subtypes or DNA mutations to eval-
uate whether these offer additional diagnostic accuracy for
LNM detection. Nonetheless, our study provides an
important proof for detecting LNM in patients with T1 CRC,
and these findings are potentially an important major step
toward the availability of robust molecular biomarkers for
the risk assessment and management of a lethal
malignancy.
atients with T1 CRC. (A) The risk-stratification model, which
utperformed detection accuracy of the transcriptomic panel or
atients (AUC, 0.90). Forest plot with ORs of clinicopathologic
) univariate and (C) multivariate logistic regression analysis in
led to the overtreatment of 92% patients with T1 CRC (left
classifier divided into high (yellow) and low (light blue) risk by
e) and LNN (dark blue). The transcriptomic panel would have
dle panel), and the risk-stratification model would have led to
el).
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Table 3.Univariate and Multivariate Logistic Regression Analysis for Lymph Node Metastasis

Factors

Univariate analysis Multivariate analysis

OR 95% CI Pa OR 95% CI Pa

Training cohort (n ¼ 46)
Age
(�67 vs <67) 0.22 0.02–2.10 .19

Sex
(male vs female) 0.58 0.09–3.82 .57

Tumor location
(right vs left) 0.39 0.04–3.82 .42

Tumor size
(�20 mm vs <20 mm) 1.58 0.24–10.44 .64

Submucosal invasion
(�1000 mm vs <1000 mm) <0.01 .99

Budding grade
(�2 vs 1) 3.57 0.42–30.10 .24

Lymph invasion
(positive vs negative) 1.82 0.27–12.38 .54

Vascular invasion
(positive vs negative) 4.65 0.68–31.91 .12

Transcriptomic panel
(high risk vs low risk) 14.22 1.41–143.68 .025

Validation cohort (n ¼ 142)
Age
(�67 vs <67) 0.97 0.30–3.16 .96

Sex
(male vs female) 1.33 0.38–4.66 .65

MSI status
(MSI-H vs MSI-L, MSS) 1.22 0.14–10.56 .86

Tumor location
(right vs left) 0.81 0.21–3.15 .76

Tumor size
(�20 mm vs <20 mm) 7.82 0.98–62.35 .05

Submucosal invasion
(�1000 mm vs <1000 mm) <0.01 .99

Budding grade
(�2 vs 1) 3.89 1.08–13.95 .037 1.70 0.32–9.06 .53

Lymph invasion
(positive vs negative) 3.78 1.08–13.23 .038 1.60 0.29–8.69 .59

Vascular invasion
(positive vs negative) 0.35 0.07–1.68 .19

Transcriptomic panel
(high risk vs low risk) 15.97 3.32–76.82 <.001 8.13 1.43–46.29 .018

Risk-stratification model
(high risk vs low risk) 37.17 4.48–308.35 <.001 17.28 1.82–164.07 .013

MSI, microsatellite instability; MSI-H, high-frequency microsatellite instability; MSI-L, low-frequency microsatellite instability;
MSS, microsatellite stable
aBold P values are statistically significant (P < .05).
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Conclusion
We have identified and developed a novel risk-

stratification model that allows identification of LNM in a
liquid biopsy assay for more robust and accurate identifi-
cation of patients with high-risk T1 CRC. Pending validation
in future prospective studies, our findings highlight the
potential clinical impact of our model for improved selection
of patients with high-risk T1 CRC, which will reduce the
overall burden of unnecessary operations and expense
associated with these procedures and improve the overall
management of patients with this malignancy.
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Supplementary Figure 1. Receiver operating characteristic curves (ROCs) for the detection of LNM in the T1 CRC training and
validation cohorts. (A) ROC curve for combined current clinical risk factors of depth of submucosal invasion (>1000 mm),
presence of lymphatic or vascular invasion, high-grade tumor budding, and poorly differentiated histology for LNM without the
transcriptomic panel in the training cohort (AUC, 0.73). (B) ROC curve for the current clinical risk factors for LNM without the
transcriptomic panel in the validation cohort (AUC, 0.76).
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